50,444 research outputs found

    Selective permeability in gels: Beyond the solution-diffusion model

    Get PDF
    Permeability, a measure of potential transport of macromolecules through crowded media such as hydrogels, determines important control parameters in bio-soft functional material applications, e.g., for filtration, drug release, and transport of reactants in responsive nano-reactors. Tuning permeability is thus of great importance since it enables selective barrier crossings in molecular transport. We develop a model of semi- flexible cross-linked polymer gel networks by means of extensive coarse-grained simulations and scaling theories. The gel system consists of randomly formed tetra- functional network regions and also bulk regions where the macromolecular cosolutes diffuse in both regions, enabling a quantitative study of partitioning, diffusivity, and permeability. The gel undergoes a sharp volume transition upon changing inter- and intra-particle interactions, yielding a rich topology of the partitioning phase landscape which is highly correlated with the cosolute diffusivity. Moreover, we find that resultant permeability is largely maximized or minimized at an optimal gel density and inter-particle couplings between the networks and the cosolutes. This nontrivial phenomenon is triggered by a competition between partitioning and diffusion, resulting in a large anti-correlation. It is revealed that permeability can be highly selective by tuning the coupling interactions and the solvent quality. By applying external driving forces, we show this selectiveness of permeability beyond the linear response regime based on the solution-diffusion model. Finally we present scaling theories for partitioning, diffusion and thus permeability in crowded systems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Vicerrectorado de Investigación de la UM

    Query Evaluation in Recursive Databases

    Get PDF

    A new scheme of force reflecting control

    Get PDF
    A new scheme of force reflecting control has been developed that incorporates position-error-based force reflection and robot compliance control. The operator is provided with a kinesthetic force feedback which is proportional to the position error between the operator-commanded and the actual position of the robot arm. Robot compliance control, which increases the effective compliance of the robot, is implemented by low pass filtering the outputs of the force/torque sensor mounted on the base of robot hand and using these signals to alter the operator's position command. This position-error-based force reflection scheme combined with shared compliance control has been implemented successfully to the Advanced Teleoperation system consisting of dissimilar master-slave arms. Stability measurements have demonstrated unprecedentedly high force reflection gains of up to 2 or 3, even though the slave arm is much stiffer than operator's hand holding the force reflecting hand controller. Peg-in-hole experiments were performed with eight different operating modes to evaluate the new force-reflecting control scheme. Best task performance resulted with this new control scheme
    • …
    corecore